
JavaScript
Conditionals
Cheat
sheet:https://www.codecademy.com/learn/i
ntroduction-to-javascript/modules/learn-
javascript-control-flow/reference

https://www.codecademy.com/learn/introduction-to-javascript/modules/learn-javascript-control-flow/reference

What are
Conditional
Statements?

A conditional statement checks specific condition(s) and
performs a task based on the condition(s).

if, else if, and else statements.

comparison operators.

logical operators.

truthy vs falsy values.

ternary operators.

the switch statement.

Comparison
Operators

When writing conditional statements, sometimes we need to use different types
of operators to compare values. These operators are called comparison operators.

Here is a list of some handy comparison operators and their syntax:

Less than: <

Greater than: >

Less than or equal to: <=

Greater than or equal to: >=

Is equal to: ===

Is NOT equal to: !==

Comparison operators compare the value on the left with the value on the right

Comparison
Operators

It can be helpful to think of comparison
statements as questions. When the
answer is “yes”, the statement
evaluates to true, and when the
answer is “no”, the statement
evaluates to false. The code above
would be asking: is 10 less than 12?
Yes! So 10 < 12 evaluates to true.

comparison
statements

We can also use comparison operators on
different data types like strings:

'apples' === 'oranges' // false

In the example above, we’re using the identity
operator (===) to check if the
string 'apples' is the same as the
string 'oranges'. Since the two strings are
not the same, the comparison statement
evaluates to false.

All comparison statements evaluate to
either true or false and are made up of:

Two values that will be compared.

An operator that separates the values and
compares them accordingly
(>, <, <=,>=,===,!==).

Scope

Scope

Scope defines where variables and
functions are accessible inside of your
program. In JavaScript, there are two
kinds of scope - global scope, and
function scope.

Var vs let

The main difference between var and let is
that instead of being function scoped, let is
block scoped. What that means is that a
variable created with the let keyword is
available inside the “block” that it was created
in as well as any nested blocks. When I say
“block”, I mean anything surrounded by a curly
brace {} like in a for loop or an if
statement.

var,let and
const

var declarations are globally scoped or function scoped
while let and const are block scoped.

var variables can be updated and re-declared within its
scope; let variables can be updated but not re-declared;
const variables can neither be updated nor re-declared.

They are all hoisted to the top of their scope but while
var variables are initialized with undefined, let and const
variables are not initialized.

While var and let can be declared without being
initialized, const must be initialized during declaration.

Lets compare

Remember that we were able to log i, discountedPrice, and
finalPrice outside of the for loop since they were declared with var
and var is function scoped.

function discountPrices (prices, discount) {
var discounted = []

for (var i = 0; i < prices.length; i++) {
var discountedPrice = prices[i] * (1 - discount)
var finalPrice = Math.round(discountedPrice * 100) / 100
discounted.push(finalPrice)

}

console.log(i) // 3
console.log(discountedPrice) // 150
console.log(finalPrice) // 150

return discounted
}

We get ReferenceError: i is not defined. What this tells us is
that variables declared with let are block scoped, not function scoped.
So trying to access i (or discountedPrice or finalPrice) outside of
the “block” they were declared in is going to give us a reference error as
we just barely saw.

function discountPrices (prices, discount) {
let discounted = []

for (let i = 0; i < prices.length; i++) {
let discountedPrice = prices[i] * (1 - discount)
let finalPrice = Math.round(discountedPrice * 100) / 100
discounted.push(finalPrice)

}

console.log(i) // 3
console.log(discountedPrice) // 150
console.log(finalPrice) // 150

return discounted
}

discountPrices([100, 200, 300], .5) // ❌ ReferenceError: i is not
defined

Simply put
var VS let

var: function scoped

let: block scoped

Hoisting

• In JavaScript, variables are initialized
with the value of undefinedwhen
they are created. That’s “Hoisting” is.
The JavaScript interpreter will assign
variable declarations a default value of
undefinedduring what’s called the
“Creation” phase.

Variable
Declaration vs
Initialization

• A variable declaration introduces a new
identifier.

Like this ---- var age

We declared it but we havnt given it a
value to initialize it.

Like this ---- var age =16

Logical
Operators

We can use logical
operators to add

more sophisticated
logic to our

conditionals. There
are three logical

operators:

the and operator
(&&)

the or operator (||)

the not operator,
otherwise known

as
the bang operator

(!)

&&
and ||or

When using
the && operator, both
conditions must evaluate
to true for the entire
condition to evaluate
to true and execute.
Otherwise, if either
condition is false,
the && condition will
evaluate to false and
the else block will
execute.

If we only care about
either condition
being true, we can use
the || operator

! NOT The ! operator will either
take a true value and
pass back false, or it will
take a false value and
pass back true.

See if you get the humor:

!false

It's funny because its true!

Truthy and
Falsy

anything that returns true in a
conditional is called truthy. Anything that
returns false in a conditional is called
falsy. All object types can be described as
either truthy or falsy.

let myVariable = 'I Exist!';
if (myVariable) {

console.log(myVariable)
} else {

console.log('The variable does not
exist.')
}

Truthy falsy

truthy

let myVariable = 'I Exist!';
if (myVariable) {

console.log(myVariable)
} else {

console.log('The variable does
not exist.')
}

The list of falsy values includes:

• 0

• Empty strings like "" or ''

• null which represent when
there is no value at all

• undefined which represent
when a declared variable lacks a
value

• NaN, or Not a Number

Ternary
Operator

The conditional operator assigns a value to a variable based on a condition.

Syntax Example See the
condition?

variablename = (condition) ?
value1:value2

voteable = (age < 18) ? "Too
young":"Old enough"

The switch
keyword

A switch statement can be used to simplify the
process of writing multiple else if statements.
The break keyword stops the remaining cases
from being checked and executed in
a switch statement.

Switch sample

<script>
let athleteFinalPosition = prompt("did you get first place, second
place or third place?");

switch(athleteFinalPosition){
case 'first place':

document.write('You get the gold medal!');
break;

case 'second place':
document.write('You get the silver medal!');
break;

case 'third place':
document.write('You get the bronze medal!');
break;

default:
document.write('No medal awarded.');
break;

}

alert("Thanks for playing");

</script>

